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1. Introduction

It has been a long standing belief that the low energy dynamics of multiple M2 branes in

M-theory can effectively be described by a three dimensional gauge theory [1]. Recently, a

precise duality was suggested by Aharony, Bergman, Jafferis and Maldacena [2] where they

proposed a new exciting AdS/CFT correspondence relating M-theory on AdS4×S7/Zk

with three dimensional N = 6, SU(N) × SU(N) Chern Simons theory.1

Combining the level k of the Chern Simons theory with the rank N of the gauge group,

one can introduce a ’t Hooft coupling as λ = N/k. For small values of the coupling, it was

shown in [5] that the SU(4) R symmetry sector of the gauge theory [3] can be mapped to

1For a nice review, see [4].
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an integrable spin chain. Taking λ to be large, M-theory on AdS4×S7/Zk can effectively be

described by a type IIA string theory on AdS4 ×CP3 [2] which leaves us with a new weak

/ strong coupling duality between a boundary gauge theory and a ten dimensional string

theory (AdS4/CFT3). Since a lot is known from the original AdS5/CFT4 correspondence,

there has been a remarkable progress in understanding both the gauge theory and the

string theory side of the AdS4/CFT3 duality [6, 7, 10, 11, 14 – 16, 20, 18, 17, 27, 45].

Even though the rapid developments, there are still a lot of things to be learned. Most

pressing is the question about quantum integrability on both sides of the correspondence.

On the gauge theory side, integrability has been demonstrated to hold at leading order in

perturbation theory [5], while the dual string theory is integrable at the classical level2 [8, 9].

Although the quantum regime of the string theory has been probed by various string

configurations in [10, 11, 20, 18, 17, 19, 21], it is nevertheless safe to say that string quantum

integrability remains largely unknown.

In the present paper we hope to shed some light on the question of quantum string

integrability by performing a detailed study of the bosonic string in a near plane wave

limit. For similar limits in the AdS5/CFT4 duality, see [37, 35, 32] and references therein.

Some aspects of the bosonic near plane wave AdS4 ×CP3 string have been extracted

in [30] where the authors calculated energy corrections for string states in a SU(2)×SU(2)

subsector using second order perturbation theory and ζ-function regularization. These

energies were compared perturbatively with the predictions from a set of conjectured all

loop Bethe equations [14]. Even though a nice result, we feel there is a need to make an

even more careful analysis than done in [30]. Most pressing is the question about factorized

scattering which is a crucial ingredient for any integrable field theory. While [30] found

agreement with the Bethe equations in [14], it was only established for operators built out

of two oscillators. A stronger test of integrability would be to calculate the energy shifts

for an arbitrary number of oscillators which would allow for precise statements about the

factorization properties of the excitations to be made.

We also feel there is need for a deeper understanding of the string Lagrangian and

Hamiltonian. As was noticed in [30], a novel feature of the type IIA AdS4 ×CP3 string is

that it exhibits cubic interactions. We show that these can be analyzed through a set of

successive canonical transformations. This allows us to reformulate the cubic interactions

in terms of additional quartic terms with the advantage that first order perturbation theory

can be applied for calculating string energies. This is important since it gives a finite answer

when calculating the energies and we do not have to use any ζ-function regularization

schemes. It is also important since second order perturbation theory includes summations

over intermediate states and it is not immediately clear why one can ignore fermionic

contributions as done in [30].

We will perform our investigations in a uniform light-cone gauge [31, 32] which gives a

very convenient expansion scheme for the near plane wave limit. The gauge also allow us

to rewrite the all loop Bethe equations [14] in a compact set of uniform light-cone gauge

2Or, to be precise, the dual string theory formulated as a coset model on OSP (2, 2|6)/SO(1, 3) × U(3)

with 24 fermions is classically integrable [8]. Classical integrability for the full type IIA model with 32

fermions remains to be proved. We thank the authors in [46] for valuable comments regarding this point.
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Bethe equations (ULCB). The simple form of the ULCB equations allows for an analytical

comparison with the results obtained from the string Hamiltonian.

The paper is organized as follows; In section two we discuss some general properties

of the string Lagrangian and its Hamiltonian. We then introduce light-cone coordinates

x± = 1
2(φ ± t), where t is a global time coordinate and φ is an angle in CP3, and impose

the uniform light cone gauge x+ = τ together with P+ constant (where P+ is the conjugate

momenta of x−) [31, 32]. The near plane wave limit is equivalent to a large P+ limit,

and following [32], we expand the string Hamiltonian up to quartic order in fields. The

section is concluded by showing that the point particle dynamics are fully captured by the

quadratic Hamiltonian.

In section three we perform a perturbative quantization and calculate the energy shifts

for arbitrary numbers of operators in the SU(2)×SU(2) subsector of the theory. This

subsector describes strings within a R×S2 ×S2 subspace of the AdS4 ×CP3 background.

To calculate the energy shifts we remove the cubic terms in the Hamiltonian through a

unitary transformation.

In section four we rewrite the proposed all loop Bethe equations of [14] in a uniform

light-cone basis [34]. We solve the ULCB equations analytically for the SU(2)× SU(2) sector

and find perfect agreement with the energies obtained from the string theory computation.

We end the paper with a brief discussion and outlook together with several appendices.

2. Bosonic type IIA string on AdS4 ×CP3

The main interest of this paper is to perform a detailed study of the bosonic string prop-

agating on an AdS4 × CP3 background. The natural starting point will be the string

Lagrangian,

L = −1

2

√
λ̃ γαβ GMN ∂α xM ∂β xN , (2.1)

where γαβ is the Weyl invariant worldsheet metric, with det γ = −1. Throughout the paper

we will use Greek / Latin indices for worldsheet / space-time quantities. As done in [20],

we define a modified ’t Hooft coupling, λ̃, given by

λ̃ = 2π2 λ, (2.2)

to emphasize the close resemblance to the AdS5/CFT4 case. The string length, σ, is chosen

to take values between [0, 2π].

The space-time metric, GMN , is defined through

ds2 = ds2
AdS4

+ 4 ds2
CP3

, (2.3)

where we use the coordinates [8, 35]

ds2
CP 3 =

dω̄idωi

1 + |ω|2 − dω̄jωjω̄idωi

(1 + |ω|2)2 , ds2
AdS4

= −
(

1 + z2
a
4

1 − z2
a
4

)2

dt2 +
1

(1 − z2
a
4 )2

dz2
a, (2.4)
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with complex ωi, and i, j, a, b ∈ {1, 2, 3}. Furthermore, the complex coordinates are pa-

rameterized as [8],

ω3 = (1 − y)eiφ, ω2 =
1√
2
r2e

i
2
φ, ω1 =

1√
2
r1e

i
2
φ, (2.5)

with real y and complex r1, r2. The two complex coordinates parameterize the two S2 inCP3. Later, we will study excitations within this subspace.

Using (2.5) gives

1

2
ds2

CP 3 =
1

1+|ω|2
{

dφ2

(
(1−y)2+

1

8
r̄ · r− (1−y)4+ 1

2 (1−y)2r̄ · r+ 1
16 (r̄ · r)2

1 + |ω|2
)

(2.6)

+dy2

(
1− (1−y)2

1+|ω|2
)

+
1

2
dr̄sdrt

(
δst−

1

2

rsr̄t

1+|ω|2
)

+
1

2
dy(1−y)

dr̄ · r+r̄ · dr

1+|ω|2
)

+
i

4
dφ(dr̄ · r − r̄ · dr)

(
1 − 2

(1 − y)2

1 + |ω|2 − 1

2

r̄ · r
1 + |ω|2

)}
.

After imposing a suitable gauge, this will be the coordinates we expand the Lagrangian (2.1)

in.

As is normally done, we will also combine t and φ into a light-cone pair as

x± =
1

2
(φ ± t). (2.7)

The theory is invariant under global shifts in the two x± coordinates, where the associated

conserved Noether charges are

P± = ±∆ + J, (2.8)

with

∆ = − 1

2π

∫ 2π

0
dσ pt, J =

1

2π

∫ 2π

0
dσ pφ. (2.9)

Here ∆ measures the space-time energy with respect to the AdS time t and J denotes

the conserved angular momentum for the angular coordinate φ. Note that the transverse

coordinates r1, r2, za and y are not charged under neither ∆ or J .

2.1 Hamiltonian dynamics

For the upcoming analysis, it is very convenient to rewrite (2.1) in first order form,

L = pM ẋM −H. (2.10)

Due to the two dimensional diffeomorphic invariance on the worldsheet, the Hamiltonian

is just a sum of constraints [35]

H =
1

2γ00

(
pMpNGMN + λ̃ x′Mx′NGMN

)
− γ01

γ00
x′M pM , (2.11)
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where the prime denotes derivatives with respect to the length parameter of the string.

The equation of motion for the worldsheet metric gives

C1 : pMpNGMN + λ̃ x′Mx′NGMN = 0, C2 : x′M pM = 0. (2.12)

The first constraint, C1, will be solved perturbatively for the light-cone Hamiltonian and

solving the second constraint, C2, allow us to express x′− in terms of transverse fields.

Integrating this equation gives the level matching condition which should be imposed on

physical states.

However, before solving the constraints, we need to impose a suitable gauge. In this

paper we will employ a uniform light-cone gauge [31, 32],

x+ = τ, P+ = Constant. (2.13)

In this gauge,3 (2.10) becomes

L = P− + pm ẋm, (2.14)

where m labels the transverse coordinates. Thus, the light-cone Hamiltonian is given by4

HL.C = −P− = ∆ − J. (2.15)

Using (2.12) we will solve this equation perturbatively for P−.

2.2 Large P+ expansion

We will do a perturbative study in a near plane wave limit defined by [31]

P+ ⇒ ∞, λ̃ ∼ P 2
+, (2.16)

together with the following rescalings of the transverse coordinates

PM ⇒
√

P+

2
PM xM ⇒

√
2

P+
xM , λ̃′ =

4 λ̃

P 2
+

, (2.17)

where we have defined the effective coupling λ̃′ which remains finite in the large P+ limit.

This is similar but not identical to the effective coupling λ′ = λ/J2, which is kept fix in

the usual large J limit [37].

As was discussed in [32], the expansion scheme above is equivalent to an expansion in

number of fields. Thus, (2.15) has an expansion as5

H = H2 + H3 + H4 + · · · , (2.18)

3One consequence of this gauge is that the string length r goes like r ∼ P+/
p

eλ. Depending on the

scalings of the coupling and the light-cone momenta, the string length may or may not be finite [36]. For

the problem at hand however, we can rescale σ so that it takes values between [0, 2π].
4We will suppress the LC subscript in the subsequent discussion.
5H3 ∼ O(P

−1/2

+ ) and H4 ∼ O(P−1

+ ).
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where the subscript denotes the number of fields in each expansion term. The presence of

a cubic interaction term is a novel feature compared to the well known AdS5×S5 case [30].

Expanding the first constraint in (2.12) to quadratic order, gives

H2 =
1

2

(
p2

y + p2
i + p2

a + y2 + z2
a +

1

4
x2

i + λ̃′
(
y′2 + z′2a + x2

i

))
, (2.19)

where we have expressed r1 and r2 in terms of four real coordinates xi, with i ∈ {1, 2, 3, 4}.
As was first observed in [11, 10], one of the CP3 coordinates, y, combines on the same

mass level as the AdS4 coordinates xi. This seem to occur only at the quadratic level and

we will see later that the higher order terms in the Hamiltonian separates y from the other

AdS4 coordinates.6

The next to leading order term in (2.18) only has dependence on the CP3 fields and

is given by7

H3 =
1

4
√

2P+

(
x2

i +4 y2−4 λ̃′ xi x′′
i +8 λ̃′ y′2+4

(
x2 p1−x1 p2+x4 p3−x3 p4

)
(2.20)

−4 p2
i − 8 p2

y

)
y − 1√

2P+
xi pi py,

The quartic Hamiltonian is quite complicated and to simplify the notation, we split it up

into three separate parts

H4 = HAdS4

4 + HAdS4/CP3

4 + HCP3

4 . (2.21)

The pure AdS4 part is simply

HAdS4

4 =
λ̃′

P+

(
z2
1 + z2

2 + z2
3

)(
z′21 + z′22 + z′23

)
(2.22)

and the term with both AdS4 and CP3 dependence is given by

HAdS4/CP3

4 =
1

2P+

{
λ̃′

(
z2
a(x′2

i +y′2)−z′2a

(
y2+

1

4
x2

i

))
+z2

a(p
2
i +p2

y)−p2
a

(
y2+

1

4
x2

i

)}
. (2.23)

The more complicated CP3 contribution is

HCP3

4 =
1

32P+

{
4x2

i y2−(x2
i )

2+24 y4+20x2
i p2

i +12
(
x2

1 p2
2+x2

2 p2
1+x2

3 p2
4+x2

4 p2
3

)
(2.24)

+4
(
(x2

1 + x2
2)(p

2
3 + p2

4) + (x2
3 + x2

4)(p
2
1 + p2

2)
)

+ 4x2
i p2

y + 48 y2 p2
y

+16 y2(x2 p1 − x1 p2 + x4 p3 − x3 p4) + 16
(
(2x1 x4 − x2 x3)p1 p4 + (2x2 x3 − x1 x4)p2 p3

+(2x2 x4 + x1 x3)p2 p4 + (2x1 x3 + x2 x4)p1 p3 + x1 x2 p1 p2 + x3 x4 p3 p4

)
+ 64 y py xi pi

−4λ̃′
(
2
(
(x2

1 + x2
2)(x

′2
1 + x′2

2 ) + (x2
3 + x2

4)(x
′2
3 + x′2

4 )
)

+ 3x2
i x′2

i − 8 y y′ xi x
′
i

6However, it could be that this combination of coordinates occurs again if one identify a proper canon-

ical transformation to push the cubic interactions up to quartic order. This transformation is somewhat

complicated to find due to the presence of derivative terms in H2 and H3.
7We have simplified the expression using that up to a total derivative, 4eλ(y′ xi x′

i +y (x′)2) = −4eλy xi x′′

i .
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+4
(
(x2 x3−x1 x4)(x

′
2 x′

3−x′
1 x′

4)+(x1 x3+x2 x4)(x
′
1 x′

3+x′
2 x′

4)
)
+x2

i y′2−12 y2 y′2
)}

.

A nice thing with the coordinates we use is that the Hamiltonian does not have any x−

dependence. At the order we are interested in, this coordinate simply drops out of the

equations. Therefore, the only effect of the C2 constraint in (2.12) is the level matching

condition. Nevertheless, as can be seen, the Hamiltonian (2.18) is still considerably more

complicated than the AdS5× S5 one in [32].

2.3 Point particle limit

Before we proceed with a detailed study of the Hamiltonian we need to resolve one issue.

We expect that the point particle dynamics should be fully governed by the quadratic

Hamiltonian. However, upon taking the point particle limit, σ → 0, of (2.18) we see that

there are both cubic and quartic non derivative terms that survives. We denote these H0
3

and H0
4 and their explicit form can be found in (A.1) and (A.2).

These terms can be removed by performing successive canonical transformations on

the Hamiltonian (2.18). We start by recalling how a generating functional V (x, p) acts on

a general phase space function f(x, p)

f(x, p) ⇒ (2.25)

f(x, p) + {V (x, p), f(x, p)}P.B +
1

2!
{V (x, p), {V (x, p), f(x, p}P.B}P.B + · · ·

The generating functional we are about to construct will be perturbative in P+,

V = V3 + V4, (2.26)

where V3 is of order P
−1/2
+ and V4 is of order P−1

+ . The leading order part, V3, is constructed

so that it removes the cubic terms. Thus, V3, has the property

{V3,H0
2}P.B = −H0

3 + O(P−1
+ ),

where the full expression for V3 can be found in (A.4). At order P−1
+ , this term will induce

additional quartic terms through

O(P−1
+ ) : H0

Add = {V3,H0
3}P.B +

1

2
{V3, {V3,H0

2}P.B}P.B + O(P
−3/2
+ ) (2.27)

=
1

2
{V3,H0

3}P.B + O(P
−3/2
+ ).

This additional term is simpler than H0
4 in (A.2), but nevertheless quite involved, see (A.5).

We construct the next to leading order term in (2.26) so that it remove the original

and additional quartic parts of the Hamiltonian,

{V4,H0}P.B = −1

2
{V3,H0} − H0

4. (2.28)

The explicit expression for V4 can be found in the appendix, equation (A.6).

– 7 –
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With this we have constructed a generating functional V with the desired property

{V,H0}P.B = −H0
3 −H0

4 + O(P
−3/2
+ ). (2.29)

It is important to note that this does not imply that we can neglect the non derivative

terms for the case of non-zero σ. The generating functional becomes significantly more

complicated since it involves non-local effects through terms like

δH2

δX
∼ δH2

δX
+

δ(∂σX)

δX
· δH2

δ(∂σX)
.

It is still plausible though that one can remove all the non derivative terms through a non

local canonical transformation which will add additional derivative quartic terms. However,

for the problem at hand this will not be necessary.

3. Field expansion, unitary transformations and energy shifts

We now have the full Hamiltonian to quartic order and are in position to investigate the

detailed consequences of it. One of the aims with the present work is to do a perturbative

calculation of the energy shift in closed subsectors of the theory. To do that we will

follow the well known procedure of expanding the coordinates in Fourier modes, promoting

oscillators to operators through the quantization process and calculating the energy shifts

in perturbation theory. Except for the novel presence of cubic terms, and the complication

arising from that, the section that follows will share many similarities with [32].

3.1 Field expansions and quantization

We start with expanding the coordinates in fourier modes,

za = i
∑

k

e−ikσ 1√
2Ωk

(
ẑa,k − ẑ†a,−k

)
, pa =

∑

k

e−ikσ

√
Ωk

2

(
ẑa,k + ẑ†a,−k

)
, (3.1)

xi = i
∑

k

e−ikσ 1√
2ωk

(
xi,k − x†

i,−k

)
, pi =

∑

k

e−ikσ

√
ωk

2

(
xi,k + x†

i,−k

)
,

y = i
∑

k

e−ikσ 1√
2Ωk

(
yk − y†−k

)
, py =

∑

k

e−ikσ

√
Ωk

2

(
yk + y†−k

)
,

where the frequencies are given by

ωk =

√
1

4
+ λ̃′ k2, Ωk =

√
1 + λ̃′ k2. (3.2)

The Fourier coefficients are promoted to operators through usual commutation relations,

[ẑa,k, ẑ†b,l] = δab δkl, [xi,k, x
†
j,l] = δij δkl, [yk, y

†
l ] = δkl. (3.3)

Using the mode expansions (3.1), the free Hamiltonian becomes

H2 =
∑

k

(
ωk x†

i,k xi,k + Ωk

(
y†k yk + ẑ†a,k ẑa,k

))
, (3.4)

– 8 –
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and the second constraint in (2.12) equals

V =
∑

k

k
(
x†

i,k xi,k + y†k yk + ẑ†a,k ẑa,k

)
, (3.5)

where physical states has to satisfy V |Phys〉 = 0.

3.2 Removing cubic terms

There are several ways to obtain the energy shifts of physical states [38, 32, 30]. The most

straightforward way is to calculate them using perturbation theory. Since we have the cu-

bic interactions, it seems that we have to resort to second order perturbation theory. This

would complicate things quite drastically. Not only would the calculation be more involved,

but we would have to sum over intermediate, zeroth order, eigenstates. In principle this

should also include the fermionic eigenstates, which we do not include in this analysis.8

However, armed with the experience from the previous section, we could try to transform

the cubic part away and then calculate energy shifts using only first order perturbation

theory. Since we are now including stringy effects, performing a canonical transformation

directly on the coordinates is quite complicated. Instead we will construct the equiva-

lent transformation on the level of oscillators.9 The oscillator picture is simpler since a

coordinate and its derivative is, up to a mode number dependent factor, almost the same.

Performing the transformation on the quantum level, the construction of V is such that

eiV He−iV = −H3 + O(P−1
+ ). (3.6)

V is cubic in oscillators and has a general form

V = V +++ + V ++− + h.c, (3.7)

where the superscript denotes the number of creation and annihilation operators. The

explicit construction of V in terms of components of H3 is straightforward. We start by

writing H3 = G+++ + G++− + h.c, with

G+++ =
∑

k,l,m
a,b,c

G+++
a,b,c;k,l,m X†,a

k X†,b
l X†,c

m , G++− =
∑

k,l,m
a,b,c

G++−
a,b,c;k,l,m X†,a

k X†,b
l Xc

m, (3.8)

where a, b, c and k, l,m are space-time / mode number indices and the set a, b, c can denote

any kind of oscillator, ẑ, x or y. The components of V can now directly be constructed

from (3.8) [32],

V +++ = −i
∑

k,l,m
a,b,c

G+++
a,b,c;k,l,m

ωa,k + ωb,l + ωc,m
X†,a

k X†,b
l X†,c

m , (3.9)

8Nevertheless, it seems to work when restricting to closed subsectors, see [30].
9This section closely follow the construction outlined in [32].
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V ++− = −i
∑

k,l,m
a,b,c

G++−
a,b,c;k,l,m

ωa,k + ωb,l − ωc,m
X†,a

k X†,b
l Xc

m,

where ωa,k is either ωk or Ωk depending on the index a. The explicit form of V +++ and

V ++− is presented in (A.7) and (A.8).

With (3.9) we have by construction that

i[V,H2] = −H3, (3.10)

and as in the point particle analysis, this transformation will induce additional quartic

terms through

O(P−1
+ ) : HAdd = i[V,H3] −

1

2
{V 2,H2} + V H2 V =

i

2
[V,H3]. (3.11)

We do not try to add any additional higher order terms to V to simplify the quartic terms.

Adding counter terms is quite simple when dealing with transformations on the level of

the coordinates, but doing it with oscillators complicates things. This does not really mat-

ter anyway since the cubic terms in the Hamiltonian (2.18) do contribute to the physical

spectrum. While we might be able to simplify things, we can not expect to remove these

terms completely.

Before we end this section, let us make some comments on the normal ordering of

the Hamiltonian. We can probably take the original cubic and quartic Hamiltonian to be

normal ordered [30]. However, this implies that the quartic additional contribution, coming

from the unitary transformation, will be subject to normal ordering ambiguities. Basically

we will get a quadratic normal ordering contribution of the form Ca,b,m,n X†,a
m Xb

n.

For the energy shift we will calculate, these terms can be shown to vanish upon ζ

-function regularization. This is a consequence of the fact that when we evaluate a specific

matrix element, the term above will always leave a sum over at least one internal index.

Very schematically we will have something as,
∑

k C̃k, where C̃k is a function of mode

numbers and the coupling λ̃′. Performing a perturbative expansion in the coupling gives

an expansion in positive powers of mode numbers. Each term in this expansion can be

shown to vanish due to the ζ -function identity [39]
∑

m∈Z(m + α)s = 0,

where α is a constant and s > 0.

3.3 Energy shifts for SU(2) × SU(2) states

Having removed the quartic terms, we can resort to first order perturbation theory to

calculate the energy shifts from the Hamiltonian (2.18). Due to the complexity, we will

focus on a subsector R × S2 × S2, which is spanned by the transverse coordinates xi.

To make the U(1) charges of each S2 manifest, we do a complex redefinition of the xi,k

oscillators as follows,

x1,k ⇒ 1√
2

(
z1,k + z̃1,k

)
, x2,k ⇒ i√

2

(
z̃1,k − z1,k

)
, (3.12)
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z1,k z̃1,k z2,k z̃2,k

U(1) 1 -1 0 0

U(1̄) 0 0 1 -1

Table 1: Charge table for complex oscillators

x3,k ⇒ 1√
2

(
z2,k + z̃2,k

)
, x4,k ⇒ i√

2

(
z̃2,k − z2,k

)
.

The upshot of this transformation is that each oscillator is distinctly charged under the

U(1)’s, as can be seen in table 1. For the gauge theory Bethe equations, the sector we

want to match with the string theory predictions consist of the operators Ai1 and Bj1

transforming under the (1/2,0) and (0,1/2) of SU(2)×SU(2) [5]. The string states that

correspond to these operators are the oscillators {z1,k, z̃2,k}. Thus, the states we will

calculate the energy shifts for are

|mM , . . . ,m1, n̄N̄ , . . . , 1〉 = z†1,mM
. . . z†1,m1

z̃†2,n̄N̄
. . . z̃†2,n̄1

|0〉, (3.13)

for arbitrary numbers of oscillators M and N̄ . For simplicity we will consider distinct mode

numbers only. The explicit calculation for the energy shifts of the above states is straight-

forward but somewhat tedious. To make the calculation easier to follow, we will focus on

the original quartic Hamiltonian (2.24) and the additional quartic contribution (3.11) sep-

arately.

The contributing part for the original quartic Hamiltonian is given by putting all AdS4

excitations and the y excitation to zero and performing the limit (3.12). Using (B.1), we

find that

〈n̄1, . . . , n̄N̄ m1, . . . ,mM | (HCP3

4

)
|mM , . . . ,m1, n̄N̄ , . . . , n̄1〉 = (3.14)

− 1

4P+

{
M∑

i=1

N̄∑

j=1

(mi − n̄j)
2 λ̃′ + 2ωmi ωn̄j

ωmi ωn̄j

}

− 1

16P+

{
N̄∑

i,j
i6=j

1 + 5 (n̄i + n̄j)
2λ̃′ − 4

(
ω2

n̄i
+ ωn̄i ωn̄j + ω2

n̄j

)

ωn̄i ωn̄j

+

M∑

i,j
i6=j

1 + 5 (mi + mj)
2λ̃′ − 4

(
ω2

mi
+ ωmi ωmj + ω2

mj

)

ωmi ωmj

}
.

For the additional terms coming from the unitary transformation (3.11), the calculation is

a bit more involved. Using (B.2) and (B.3) in the appendix, gives

〈n̄1, . . . , n̄N̄ m1, . . . ,mM | (HAdd

)
|mM , . . . ,m1, n̄N̄ , . . . , n̄1〉 = (3.15)

=
N̄ M

2P+
− 1

16P+

{
N̄∑

i,j
i6=j

Ω2
n̄i+n̄j

+ 4ωn̄i ωn̄j

ωn̄i ωn̄j

+

M∑

i,j
i6=j

Ω2
mi+mj

+ 4ωmi ωmj

ωmi ωmj

}
.
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By adding these two terms together we obtain that the energy shift for the SU(2)×SU(2)

sector is given by

∆Esu2×su2 =
N̄ M

2P+
− 1

4P+

{
M∑

i=1

N̄∑

j=1

(mi − n̄j)
2 λ̃′ + 2ωmi ωn̄j

ωmi ωn̄j

}
(3.16)

− 1

16P+

{
N̄∑

i,j
i6=j

6Ω2
n̄i+n̄j

− 4
(
1 + ω2

n̄i
+ ω2

n̄j

)

ωn̄i ωn̄j

+

M∑

i,j
i6=j

6Ω2
mi+mj

− 4
(
1 + ω2

mi
+ ω2

mj

)

ωmi ωmj

}
.

This is one of the main results of this paper. For two excitations, and in a different

coordinate system, the corresponding energy shift were calculated in [30]. The result we

obtain here holds for general number of impurities and is of a much simpler structural

form. The simplicity is a consequence of the uniform light-cone gauge. This gauge choice

also exhibit similar simplifications in the AdS5× S5 case [32].

In the next section we will show that the energy shift (3.16) is exactly reproduced by

the Bethe equations of [14] in a light-cone basis.

4. Large P+ expansion of the all loop asymptotic Bethe equations

As has been known a long time, the dilatation operator of N = 4 SYM can be mapped to

a spin chain Hamiltonian [40, 24, 22, 42, 41]. This line of research, initiated by Minahan

and Zarembo in [40], led to an enormous progress in understanding the exact spectrum of

operators on both sides of the AdS5/CFT4 correspondence. Astoundingly, it seems that

much of what has been learned in the original duality can be repeated for the AdS4/CFT3

correspondence. For example, to leading order the dilatation operator of the Chern Simons

theory was demonstrated to be equivalent to a SU(4) spin chain Hamiltonian [5]. Soon

after, this was followed by an all loop proposal in [14].

In the section below we will match the energy shifts obtained from diagonalization of

the string Hamiltonian with predictions from the all loop Bethe equations of [14] written

in a light-cone basis.

4.1 Light-cone Bethe equations

We start by writing down the all loop Bethe equations [14] for the reduced SU(2)×SU(2)

sector

(
x+(pk)

x−(pk)

)L

=

M∏

k 6=j

S(pk, pj)

M∏

j=1

σ(pk, pj)

N̄∏

j=1

σ(pk, qj) (4.1)

(
x+(qk)

x−(qk)

)L

=

N̄∏

k 6=j

S(qk, qj)

N̄∏

j=1

σ(qk, pj)

M∏

j=1

σ(qk, pj),

where the S-matrix is given by

S(pk, pj) =
Φ(pk) − Φ(pj) + i

Φ(pk) − Φ(pj) − i
, (4.2)
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with

Φ(pk) = cot
pk

2

√
1

4
+ 4h(λ)2 sin2 pk

2
. (4.3)

The rapidities, pk and qk, has to satisfy the momentum constraint

M∑

i=1

pk +
N̄∑

j=1

qj = 0. (4.4)

At leading order, the function h(λ) interpolates between λ for small values of the ’t Hooft

coupling and
√

λ/2 for large values [11, 10]. The variables x± and Φ are related through

x± +
1

x±
=

1

h(λ)

(
Φ ± i

2

)
. (4.5)

For the dressing phase, we will only need the leading order part [44] which can be written

in terms of conserved charges as

σ(pk, pj) = exp

{
2i

∞∑

r=0

(
h(λ)2

4

)r+2(
Qr+2(pk)Qr+3(pj) − Qr+3(pk)Qr+2(pj)

)
}

, (4.6)

where the charges Qr(pk) are given by

Qr(pk) =
2 sin( r−1

2 pk)

r − 1

(√1
4 + 4h(λ)2 sin2 pk

2 − 1
2

h(λ)2 sin pk
2

)r−1

. (4.7)

The light-cone energy can be expressed through the dispersion relation

∆ − J =

M∑

j=1

(√
1

4
+ 4h(λ)2 sin2 pj

2
− 1

2

)
+

N̄∑

j=1

(√
1

4
+ 4h(λ)2 sin2 qj

2
− 1

2

)
. (4.8)

The numbers M and N̄ figuring above is the total number of excitations in each SU(2), or

equivalently, the number of z1,k and z̃2,k oscillators. The letter L in (4.1) is the length of

the spin chain and it can be expressed through the angular momentum J and the excitation

numbers as [34]

L = J +
1

2
(M + N̄). (4.9)

Somewhat surprisingly (4.1) is very similar to the corresponding set of equations in the

AdS5× S5 case [24]. The only difference lies in the form of the interpolating function h(λ)

(which is constant in the AdS5 case) and the phase factor. The phase factors in the two

correspondences are related through [14]

σ(pk, pj)AdS5
= σ2(pk, pj)CP3

. (4.10)
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The Bethe equations (4.1) are as they stand not very convenient for a large P+ expansion

since they are perturbative in both P+ and λ (or λ̃′). We can put it in a form more

appropriate if we rewrite the spin chain length, L, as

J =
1

2
(P+ + P−), λ =

P 2
+ λ̃′

8π2
, (4.11)

where we also expressed the original ’t Hooft coupling in terms of the effective coupling

defined in (2.17). Expressing L through the above and (4.9), together with the identity [24]

Φ(pk) − Φ(pj) + i

Φ(pk) − Φ(pj) − i
=

x+(pk) − x−(pj)

x−(pk) − x+(pj)
· 1 −

(
x+(pk)x−(pj)

)−1

1 −
(
x−(pk)x+(pj)

)−1 ,

we rewrite (4.1) as

(
x+(pk)

x−(pk)

) 1

2
(P++M+N̄)

=

(
x+(pk)

x−(pk)

)− 1

2
P−

M∏

k 6=j

x+(pk) − x−(pj)

x−(pk) − x+(pj)
(4.12)

·1 −
(
x+(pk)x−(pj)

)−1

1 −
(
x−(pk)x+(pj)

)−1

M∏

j=1

σ(pk, pj)

N̄∏

j=1

σ(pk, qj),

(
x+(qk)

x−(qk)

) 1

2
(P++M+N̄)

=

(
x+(qk)

x−(qk)

)− 1

2
P−

N̄∏

k 6=j

x+(qk) − x−(qj)

x−(qk) − x+(qj)

·1 −
(
x+(qk)x−(qj)

)−1

1 −
(
x−(qk)x+(qj)

)−1

N̄∏

j=1

σ(qk, pj)

M∏

j=1

σ(qk, pj),

At first glance this does not seem like a very useful reformulation of the original equations.

However, using the ansatz

pk =
p0

k

P+
+

p1
k

P 2
+

, qj =
q0
j

P+
+

q1
j

P 2
+

, (4.13)

it was shown in [34] that

(
x+(pk)

x−(pk)

)−P−
K∏

k 6=i

1 −
(
x+(pk)x−(pj)

)−1

1 −
(
x−(pk)x+(pj)

)−1

K∏

j=1

σ2(pk, pj) = 1 + O(P−3
+ ). (4.14)

Since this is almost what appears in (4.12), we can eliminate the dependence on the scat-

tering phase. Therefore, to order P−2
+ , we have

(
x+(pk)

x−(pk)

) 1

2
(P++M+N̄)

=
M∏

k 6=j

x+(pk) − x−(pj)

x−(pk) − x+(pj)
(4.15)

·
(

1 −
(
x+(pk)x−(pj)

)−1

1 −
(
x−(pk)x+(pj)

)−1

) 1

2
N̄∏

j=1

(
1 −

(
x+(pk)x−(qj)

)−1

1 −
(
x−(pk)x+(qj)

)−1

)− 1

2
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(
x+(qk)

x−(qk)

) 1

2
(P++M+N̄)

=
N̄∏

k 6=j

x+(qk) − x−(qj)

x−(qk) − x+(qj)

·
(

1 −
(
x+(qk)x−(qj)

)−1

1 −
(
x−(qk)x+(qj)

)−1

)1

2
M∏

j=1

(
1 −

(
x+(qk)x−(pj)

)−1

1 −
(
x−(qk)x+(pj)

)−1

)− 1

2

.

What we gained from this is that for each order of P+, these equations can be solved non

perturbatively for λ̃′. This was a feature which also was observed for the AdS5/CFT4 case

in [34].

In the next section we will show that the energy shifts derived from the set of equations

above exactly match the energies derived from the Hamiltonian (2.18).

4.2 Large P+ expansion

Using the ansatz for the momentum (4.13), we can expand (4.15), which at leading or-

der gives

p0
k = 4π mk, q0

j = 4π n̄j, (4.16)

where mk and nj takes values in the set of string mode numbers. For the next terms, p1
k

and q1
j , we get more complicated expression10

p1
k = −2π (M + N̄)mk + 16π mk

{
M∑

j 6=k

mj(1 + ωk + ωj)

mj(1 + 2ωk) − mk(1 + 2ωj)
(4.17)

+
M∑

j=1

mj(mk − mj) λ̃′

(1+2ωk)(1+2ωj)−4mkmjλ̃′
−

N̄∑

j=1

n̄j(mk − n̄j) λ̃′

(1+2ωk)(1+2ωj)−4mkn̄j λ̃′

}
,

q1
k = −2π (M + N̄) n̄k + 16π n̄k

{
N̄∑

j 6=k

n̄j(1 + ωk + ωj)

n̄j(1 + 2ωk) − n̄k(1 + 2ωj)

+
N̄∑

j=1

n̄j(n̄k − n̄j) λ̃′

(1+2ωk)(1+2ωj)−4n̄kn̄jλ̃′
−

M∑

j=1

mj(n̄k − mj)λ̃
′

(1+2ωk)(1+2ωj)−4n̄kmjλ̃′

}
.

We want to use the solutions for p1
k and q1

j in the expression for the light-cone energy. To

achieve this we expand ∆ − J in (4.8)

∆ − J =
M∑

k=1

(
− 1

2
+ ωk +

1

P+

mk p1
k λ̃′

4π ωk

)
(4.18)

+
N̄∑

k=1

(
− 1

2
+ ωk +

1

P+

n̄k q1
k λ̃′

4π ωk

)
+ O(P

−3/2
+ ),

and using the solutions for the rapidities gives the light-cone energy. This expression, which

is presented in (C.1), is quite complicated and does not immediately resemble the solutions

10We now simplify the notation using ωmk
= ωk. Which type of SU(2) excitation the indices takes values

from should be clear from the context.
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obtained from the string Hamiltonian in (3.16). However, imposing the level matching

constraint, together with some algebra, shows that the energy shifts obtained from the

Bethe equations equal

∆Esu2×su2 =
N̄ M

2P+
− 1

4P+

{
M∑

i=1

N̄∑

j=1

(mi − n̄j)
2 λ̃′ + 2ωmi ωn̄j

ωmi ωn̄j

}
(4.19)

− 1

16P+

{
N̄∑

i,j
i6=j

6Ω2
n̄i+n̄j

−4
(
1+ω2

n̄i
+ω2

n̄j

)

ωn̄iωn̄j

+

M∑

i,j
i6=j

6Ω2
mi+mj

−4
(
1+ω2

mi
+ω2

mj

)

ωmiωmj

}
.

Which is identical to the energy shift from the string computation (3.16).

5. Summary and outlook

In the present paper we have studied the near plane wave dynamics of a bosonic string

propagating in an AdS4 × CP3 background. Due to the recent proposal of [2], type IIA

string theory in this background is supposedly equivalent to a three dimensional Chern

Simons theory living on the boundary of the AdS space. This conjecture shares many simi-

larities with the well studied AdS5/CFT4 correspondence. In particular, it seems like many

of the tools based on integrability are applicable also in this new proposal. Even though

there has been a rapid progress in understanding the duality, nevertheless, it is safe to say

that the integrable structures of the AdS4/CFT3 correspondence still remains conjectural.

In the present paper we have added support for integrability in AdS4 ×CP3 by per-

forming a direct comparison between string energies and predictions from a set of rewritten

all loop Bethe equations (ULCB) [14, 34].

We started out with a detailed analysis of the cubic and quartic string Hamiltonian and

its point particle dynamics. We removed the cubic terms with an unitary transformation

and extracted the energy shifts for a certain subsector of the theory using first order

perturbation theory.

We then calculated an exact all loop (in λ̃′) expression for the energy shifts from the

ULCB equations and successfully matched these with the energies obtained from the string

computation. Since this is a result valid for an arbitrary number of string excitations, this

calculation lends support for quantum string integrability.

There are several extensions of the current work. The most pressing is to make the

model supersymmetric by adding fermions. Starting from [8], this can be done along the

lines of [32]. As can be seen form the current paper, where the complications arising in

the AdS4 ×CP3 background are brought to light, the addition of Fermions will be quite

an involved calculation. Nevertheless, there should be no conceptual issues other than the

ones described here, so deriving the full model should certainly be possible.

Another interesting line of research would be to investigate the role of the massive

modes. As was discussed, za and y split up at the cubic level. However, it could be that

they recombine if one interprets the cubic interactions correctly. For example, finding a

– 16 –



J
H
E
P
0
2
(
2
0
0
9
)
0
4
6

suitable canonical transformation might shift the cubic part to quartic order in such a way

that y contracts with the AdS coordinates, restoring the SO(4) symmetry.

We plan to return to some of these questions in future works.
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A. Generating functionals

In this appendix we collect the various form of generating functionals and non-derivative

interaction terms that was referred to in the main bulk of the text.

A.1 Generating functional for point particle Hamiltonian

Here we present the details of finding a generating functional V that removes the interaction

surviving the point particle limit.

Taking σ → 0 in (2.18) removes all derivative terms, but leaves

H0
3 =

1

4
√

2P+

{(
x2

i + 4 y2 + 4
(
x2 p1 − x1 p2 + x4 p3 − x3 p4

)
− 4 p2

i − 8 p2
y

)
y (A.1)

−4xi py py,
}

,

and

H,0
4 =

1

2P+

{
z2
a (p2

i + p2
y) − p2

a

(
y2 +

1

4
x2

i

)}
(A.2)

+
1

32P+

{
4x2

i y2 − (x2
i )

2 + 24 y4 + 20x2
i p2

i + 12
(
x2

1 p2
2 + x2

2 p2
1 + x2

3 p2
4 + x2

4 p2
3

)

+4
(
(x2

1 + x2
2)(p

2
3 + p2

4) + (x2
3 + x2

4)(p
2
1 + p2

2)
)

+ 4x2
i p

2
y + 48y2p2

y

+16y2(x2p1−x1p2+x4p3−x3p4)+16
(
(2x1x4−x2x3)p1p4+(2x2x3−x1x4)p2p3

+(2x2x4+x1x3)p2p4+(2x1x3+x2x4)p1p3+x1x2p1p2+x3x4p3p4

)
+64ypyxipi

}
.

We want to construct a perturbative generating functional V , see (2.26), with the prop-

erty that

{V,H0}P.B = −H0
3 −H0

4 + O(P
−3/2
+ ). (A.3)

One can easily see that a leading order term of V as

V3 =
1√
2P+

(
p2

i +
(
p2 x1 − p1 x2 + p4 x3 − p3 x4

)
− 1

4
x2

i − y2

)
py, (A.4)
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has the property, {V3,H0
2} = −H0

3. Since this term starts at O(P
−1/2
+ ), it also induces

additional quartic terms

H0
Add =

1

2
{V3,H0

3} = (A.5)

− 1

2P+

{
py y

(
pi xi + 4 py y

)
+

1

2

(
p2

i + (p2 x1 − p1 x2 + p4 x3 − p3 x4) −
1

4
x2

i − y2

)

×
(

p2
j + 2 p2

y + (p2 x1 − p1 x2 + p4 x3 − p3 x4) −
1

4
x2

j − 3 y2

)
+ p2

y

(
p2

i +
1

4
x2

i

)}
.

To remove these and H0
4, we can, after some trial and error, construct

V4 =
1

4P+

{
pi xi

(
y2 − p2

j − p2
y + p2

a + z2
a

)
+

1

4

(
py y x2

i + 3 pi xi x
2
j − x2

i pa za

)
(A.6)

−p2
i

(
paza+3pyy

)
−2
(
p2x1−p1x2+p4x3−p3x4

)(
pyy+pixi

)
+2
(
pyyp2

a−p2
ypaza

)}
,

which has the desired property (2.28). With this we have managed to construct a generat-

ing functional that removes all non-derivative terms from the point particle Hamiltonian.

However, note that this does not imply that the non-derivative terms can be ignored when

σ is non-zero.

A.2 Unitary transformation

For the unitary transformation that removes the cubic terms, the explicit form of (3.9) is

V +++ =
1

16
√

P+

∑

k,l,m

δk+l+m,0

{
(ωkωlΩm)−1/2

ωk+ωl+Ωm

((
1+4λ̃′kl+4ωl(ωk+Ωm)

)
y†−mx†

i,−kx
†
i,−l(A.7)

−4i(ωk − ωl)y
†
−m

(
x†

2,−kx
†
1,−l + x†

4,−kx
†
3,−l

))

+4
(ΩkΩlΩm)−1/2

Ωk + Ωl + Ωm

(
1 − 2λ̃′kl + 2ΩkΩl

)
y†−my†−ky

†
−l

}
,

and

V ++− = (A.8)

− 1

4
√

P+

∑

k,l,m

δk+l+m,0

{
(ωk ωl Ωm)−1/2

ωk − ωl + Ωm

((
(ωk − ωl)

2 + Ωm(ωk − ωl)
)
y†−m x†

i,−k xi,l

−i(ωk + ωl) y†−m

(
x†

2,−k x1,l − x†
1,−k x2,l + x†

4,−k x3,l − x†
3,−k x4,l

))

+
(Ωk Ωl Ωm)−1/2

Ωk + Ωl − Ωm

(
3 − 2 λ̃′

(
kl + km + lm

)
+ 2
(
Ωk Ωl − Ωk Ωm − Ωl Ωm

))
y†−k y†−l ym

}

− 1

8
√

P+

∑

k,l,m
k 6=l 6=m6=0

δk+l+m,0
(ωk ωl Ωm)−1/2

ωk + ωl − Ωm

((
(ωk + ωl)

2 − 2Ωm ωl

)
x†

i,−k x†
i,−l ym

−2i(ωk − ωl)
(
x†

2,−k x†
1,−l + x†

4,−k x†
3,−l

)
ym

)
.
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Reality of the Hamiltonian demands,

V +−− = (V ++−)†, V −−− = (V +++)†. (A.9)

In the last line of V ++− we threw away the term where k, l and m are simultaneously zero,

since for this term the denominator ωk − ωl + Ωm is zero. Ignoring this contribution is

allowed since the corresponding term in G++− is zero and does not contribute.

The above unitary transformation induces additional quartic terms, see (3.11). All

terms that have an unequal number of creation and annihilation operators can be removed

with further canonical transformations [32], so the relevant additional quartic terms are

given by

i

2
[V,H3] = i

(
[V +++, G−−−] + [V ++−, G+−−]

)
, (A.10)

where we used that the additional part has to be Hermitian.

B. Quartic Hamiltonian in oscillator expansion

In this appendix we collect various expressions for the contributing parts of the original and

the additional Hamiltonian. We start out with the original quartic contributions, which

after putting the AdS4 and the y excitations to zero, equals

HCP3

4 = − 1

16P+

∑

klmn
k+l+m+n=0

(
ωk ωl ωm ωn

)−1/2

{
z̃†2,−k z†1,−l z̃2,m z1,n (B.1)

×
(
1 − 4 (kl + mn)λ̃′ − 8 (km + ln)λ̃′ + 6 (ωk ωl + ωm ωn) − 2 (ωk + ωl)(ωn + ωm)

)

+
1

2

(
z̃†2,−k z̃†2,−l z̃2,m z̃2,n + z†1,−k z†1,−l z1,m z1,n

)
×
(
1−5 (k+l)(m+n)λ̃′+2 (ωmωn+ωk ωl)

−3 (ωl ωn + ωk ωm) − 5 (ωl ωm + ωk ωn)
)}

+ non relevant terms.

The non relevant terms are combinations like z†1,−k z†1,−l z̃2,m z̃2,n which are present in the

Hamiltonian (2.18) but nevertheless cancel among each other. From the worldsheet S-

matrix point of view, this is quite obvious since processes like Z1 Z1 ⇒ Z2 Z2 are not

allowed due to charge conservation, see table (1).

For the additional term coming from the unitary transformation, we have for the first

term, [V +++, G−−−], a contribution as

i [V +++, G−−−] = − 1

(32)2 P+

∑

klmn
k+l+m+n=0

(z̃†2,−k z̃†2,−l z̃2,m z̃2,n + z†1,−k z†1,−l z1,m z1,n)

Ωm+n
√

ωk ωl ωm ωn

×(ωk − ωl)(ωn − ωm)

ωk + ωl + Ωm+n
(B.2)

+ non relevant terms.
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The [V ++−, G+−−] contribution is a little bit more complicated,

i [V ++−, G+−−]=
1

16P+

∑

klmn
k+l+m+n=0

{
z̃†2,−kz

†
1,−lz̃2,mz1,n√

ωkωlωmωn

[
Ω−1

k+m

(
(ωk + ωm)(ωl − ωn) (B.3)

+(ωk − ωm)(ωl − ωn)(ωm − ωk + Ωk+m) +
1

ωl − ωn + Ωk+m

(
(ωk + ωm)(ωl + ωn)

+(ωk − ωm)(ωl + ωn)(ωm − ωk + Ωk+m)
))

+ Ω−1
l+n

(
(ωm − ωk)(ωl + ωn)

+(ωk − ωm)(ωl − ωn)(ωn − ωl + Ωl+n) +
1

ωk − ωm + Ωl+n

(
(ωk + ωm)(ωl + ωn)

+(ωk + ωm)(ωn − ωl)(ωn − ωl + Ωn+l)
))]

+
(z̃†2,−k z̃†2,−l z̃2,m z̃2,n + z†1,−k z†1,−l z1,m z1,n)

4Ωl+n
√

ωk ωl ωm ωn

[

4 (ωm − ωk)(ωl + ωn) + 4 (ωk − ωm)(ωl − ωn)(ωn − ωl + Ωl+n)

+
1

ωk − ωm + Ωl+n

(
(ωk + ωm)(ωl − ωn)(ωn − ωl + Ωl+n) − 4 (ωk + ωm)(ωl + ωn)

)

+
Ωl+n

Ωm+n (ωk + ωl − Ωm+n)
(ωk − ωl)(ωn − ωm)

]}
+ non relevant terms.

Using these two expressions allows us to calculate the additional energy shift corresponding

to the unitary transformation.

C. Expansion terms for the Bethe equations

Using the solutions of the momentum components, (4.16) and (4.17), in (4.8) gives

∆ESU(2)×SU(2) = (C.1)

=
λ̃

2P+

M∑

k=1

{
− (M + N̄)m2

k

ωk
+

8m2
k

ωk

(
M∑

j 6=k

mj(1 + ωk + ωj)

mj(1 + 2ωk) − mk(1 + 2ωj)

+

M∑

j=1

mj(mk − mj)λ̃
′

(1+2ωk)(1+2ωj)−4mkmjλ̃′
−

N̄∑

j=1

n̄j(mk − n̄j)λ̃
′

(1+2ωk)(1+2ωj)−4mkn̄jλ̃′

)}

+
λ̃

2P+

N̄∑

k=1

{
− (M + N̄)n̄2

k

ωk
+

8n̄2
k

ωk

(
N̄∑

j 6=k

n̄j(1 + ωk + ωj)

n̄j(1 + 2ωk) − n̄k(1 + 2ωj)

+

N̄∑

j=1

n̄j(n̄k − n̄j)λ̃
′

(1+2ωk)(1+2ωj)−4n̄kn̄jλ̃′
−

M∑

j=1

mj(n̄k − mj)λ̃
′

(1+2ωk)(1+2ωj)−4n̄kmjλ̃′

)}
.

Showing that this equals the expression given by diagonalization of the string Hamiltonian

in (3.16) is a little bit involved. Easiest way to do this is to resort to Mathematica or some

other computer program for algebraic manipulations.11 It is important to note though that

expressions only equal upon imposing (4.4).

11For people working with Mathematica, there is a very good package for quantum computations in [43].
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